On multidimensional central limit theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Central Limit Theorem Forthe

The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater (1984). The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of diierential operators, introduced and analyze...

متن کامل

Central limit theorem on MV-algebras

The aim is to approve the Central limit theorem on MV-algebras by the new approach, presented by Riečan in [1]. We use the observable as a distribution function instead of the σ-homomorphism. The main idea is in local representation of σ-algebras. The following theorem is proved: Let M be a σ-complete MV-algebra with product, m : M −→ 〈0, 1〉 be a σadditive state, (xn)n be a sequence of independ...

متن کامل

On the Markov chain central limit theorem

The goal of this paper is to describe conditions which guarantee a central limit theorem for functionals of general state space Markov chains. This is done with a view towards Markov chain Monte Carlo settings and hence the focus is on the connections between drift and mixing conditions and their implications. In particular, we consider three commonly cited central limit theorems and discuss th...

متن کامل

Central Limit Theorem on Chebyshev Polynomials

Let Tl be a transformation on the interval [−1, 1] defined by Chebyshev polynomial of degree l (l ≥ 2), i.e., Tl(cos θ) = cos(lθ). In this paper, we consider Tl as a measure preserving transformation on [−1, 1] with an invariant measure 1 π √ 1−x2 dx. We show that If f(x) is a nonconstant step function with finite kdiscontinuity points with k < l − 1, then it satisfies the Central Limit Theorem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lithuanian Mathematical Journal

سال: 1963

ISSN: 2669-1973

DOI: 10.15388/lmj.1963.19424